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This manual is only partially complete and isawork in progress. A completed manual will be available by
January 1,2000. Cluster and TreeView are'Y 2K Compliant because they are oblivious of date and time.



Introduction:

Cluster and TreeView are programs that provide a computationa and graphical
environment for analyzing data from DNA microarray experiments, or other genomic
datasets. The program Cluster (which will soon be getting a new name) organizes and
analyzes the data in a number of different ways. TreeView alows the organized datato
be visualized and browsed. The next major release of this software (scheduled for early
2000) will integrate these two programs together into one application.

This manual isintended as a reference for using the software, and not as a comprehensive
introduction to the methods employed. Many of the methods are drawn from standard
statistical cluster analysis. There are excellent textbooks available on cluster analysis
which are listed in the bibliography at the end. The bibliography also contains citations
for recent publications in the biological sciences, especially genomics, that employ
methods similar to those used here.
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Loading Data: Thefirst step in using Cluster isto import data. Currently, Cluster only
reads tab-delimited text filesin a particular format, described below. Such tab-delimited
text files can be created and exported in any standard spreadsheet program, such as
Microsoft Excel. An example datafile can be examined by pressing the File Format Help
button on the Input panel of Cluster. This panel contains all the information you need for
making a Cluster input file.

By convention, in Cluster input tables rows represent genes and columns represent
samples or observations (e.g. a single microarray hybridization). For a smple timecourse,
aminimal Cluster input file would look like this:

YORF
1 1.3 2.4 5.8 2.4
0.9 0.8 0.7 0.5 0.2
0.8 2.1 4.2 10.1 10.1
11 13 0.8 0.4
1.2 1 1.1 4.5 8.3

Each row (gene) has an identifier (in green) that always goes in the first column. Here we
are using yeast open reading frame codes. Each column (sample) has alabel (in blue)
that is always in the first row; here the labels describe the time at which a sample was
taken. The first column of the first row contains a special field (in red) that tells the
program what kind of objects are in each row. In this case, Y ORF stands for yeast open
reading frame. Thisfield can be any apha-numeric value. It isused in TreeView to
specify how rows are linked to external websites.

The remaining cells in the table contain data for the appropriate gene and sample. The
“5.8" inrow 2 column 4 means that the observed data value for gene YALOOLC at 2
hours was 5.8. Missing values are acceptable and are designated by empty cells (e.g.
YALQO5C at 2 hours).

It is possible to have additional information in the input file. A maximal Cluster input file
would look like this:

YORF NAME GWEIGHT GORDER 0 30 1 2 4
EWEIGHT 1 1 1 1 0
EORDER 5 3 2 1 1
YALOO1C TFIIIC 138 KD SUBUNIT 1 1 1 13 24 58 24
YALOO2W UNKNOWN 0.4 3 09 08 07 05 02
YALOO3W ELONGATION FACTOR EF1-BETA 0.4 2 08 21 42 10.1 101
YALOO5C CYTOSOLIC HSP70 0.4 5 11 13 0.8 0.4

The yellow columns and rows are optional. By default, TreeView usesthe ID in column
1 as alabel for each gene. The NAME column allows you to specify a label for each gene
that is distinct from the ID in column 1. The other rows and columns will be described
later in this text.



Demo data: A demo datafile, which will be used in all of the examples here, is available
at http://rana.stanford.edu/software/demo.txt. It contains yeast gene expression data
described in Eisen et al. (1998) [see references at end]. Download this data and load it
into Cluster.

Cluster will give you information about the loaded datafile.

File Loaded |[-4w/orkyeastD atasets\demo. bt

Job Mame [demo

Dataset 2457 Rows
HAE NS 9 Calumns Save

Adjusting and Filtering Data: Cluster provides a number of options for adjusting and
filtering the data you have loaded. These functions are accessed viathe Filter Data and
Adjust Data tabs.

Adjusting Data:

Filter Data  Adjust Data | Hierarchical Elusteringl Self Organizing Mapsl Principal Component .-'f-.nal_l,lsisl

: [ Genes Aool |
[~ Log Transform Data Marmalize i
[ Aurays
Order of Operations:
_ [ Genes [ Genes Log Transform
tedian Center tean Center Center Genes
™ Arays ™ Arays MNaormalize Genes
Center Arrays
Maormalize Arrays

From the Adjust Data tab, you can perform a number of operationsthat alter the
underlying data in the imported table. These operations are

Log Transform Data: replace al data values X by logz(X).
Normalize Genes and/or Arrays. Multiply all values in each row and/or column of data a

scale factor Sto so that the sum of the squares of the values isin each row and/or column
is 1.0 (aseparate Sis computed for each row/column).



Mean Center Genes and/or Arrays. Subtract the row-wise or column-wise mean from the
values in each row and/or column of data, so that mean value of each row and/or column
isO.

Median Center Genes and/or Arrays. Subtract the row-wise or column-wise mean from
the values in each row and/or column of data, so that median value of each row and/or
columnisO.

These operations are not associative, so the order in which these operationsis applied is
very important, and you should consider it carefully before you apply these operations.

The order of operationsis (only checked operations are performed):

Log transform all values.
Mean center rows.
Median center rows.
Normalize rows.

Mean center columns.
Median center columns.
Normalize columns.

When do you want to adjust data?:

Log transformation: The results of many DNA microarray experiments are fluorescent
ratios. Ratio measurements are most naturally processed in log space. Consider an
experiment where you are looking at gene expression over time, and the results are
relative expression levels compared to time 0. Assume at timepoint 1, ageneis
unchanged, at timepoint 2 it is up 2-fold and at timepoint three is down 2-fold relative to
time 0. The raw ratio values are 1.0, 2.0 and 0.5. In most applications, you want to think
of 2-fold up and 2-fold down as being the same magnitude of change, but in an opposite
direction. In raw ratio space, however, the difference between timepoint 1 and 2 is +1.0,
while between timepoint 1 and 3 is-0.5. Thus mathematical operations that use the
difference between values would think that the 2-fold up change was twice as significant
as the 2-fold down change. Usually, you do not want this. In log space (we use log base 2
for smplicity) the data points become 0,1.0,-1.0.With these values, 2-fold up and 2-fold
down are symmetric about 0. For most applications, we recommend you work in log
Space.

Mean/Median Centering: Consider a now common experimental design where you are
looking at alarge number of tumor samples al compared to a common reference sample
made from a collection of cell-lines. For each gene, you have a series of ratio values that
are relative to the expression level of that gene in the reference sample. Since the
reference sample really has nothing to do with your experiment, you want your analysis
to be independent of the amount of a gene present in the reference sample. Thisis
achieved by adjusting the values of each gene to reflect their variation from some
property of the series of observed values such as the mean or median. Thisis what mean



and/or median centering of genes does. Centering makes less sense in experiments where
the reference sample is part of the experiment, asit is many timecourses.

Centering the data for columns/arrays can also be used to remove certain types of biases.
The results of many two-color fluorescent hybridization experiments are not corrected for
systematic biases in ratios that are the result of differencesin RNA amounts, labeling
efficiency and image acquisition parameters. Such biases have the effect of multiplying
ratios for all genes by afixed scalar. Mean or median centering the data in log-space has
the effect of correcting this bias, although it should be noted that an assumption is being
made in correcting this bias, which is that the average gene in a given experiment is
expected to have aratio of 1.0 (or log-ratio of 0).

In general, | recommend the use of median rather than mean centering.
Normalization:

Normalization sets the magnitude (sum of the squares of the values) of a row/column
vector to 1.0. Most of the distance metrics used by Cluster work with internaly
normalized data vectors, but the data are output as they were originally entered. If you
want to output normalized vectors, you should select this option.

A sample series of operations for raw data would be:

Adjust Cycle 1) log transform

Adjust Cycle 2) median center genes and arrays
repeat (2) fiveto ten times

Adjust Cycle 3) normalize genes and arrays
repeat (3) fiveto ten times

This results in alog-transformed, median polished (i.e. al row-wise and column-wise
median values are close to zero) and normal (i.e. al row and column magnitudes are
close to 1.0) dataset.

After performing these operations you should save the dataset.



Filtering Data:

Fi“EfDatal.ﬁ.diustData Hierarchizal Clustening | Self Organizing Mapz | Principal Component &nalysis

—Filter Genes

[ % Present »= IBU Filtes |
[~ 5D [Geneectar] »= I2

[ Atleast |1 Observations absval] >= |2
[ Masval - Mimval »= |2

The Filter Data tab allows you to remove genes that do not have certain desired
properties from you dataset. The currently available properties that can be used to filter
data are

% Present >= X. This removes al genes that have missing values in greater than (100-X)
percent of the columns.

SD (Gene Vector) >= X. Thisremoved al genes that have standard deviations of
observed values less than X.

At least X Observations abs(Va)>= Y. Thisremoves al genes that do not have at least X
observations with absolute values greater than Y.

MaxVal-MinVal >=X. This removes al genes whose maximum minus minimum vaues
arelessthan X.

These are fairly self-explanatory. When you pressfilter, the filters are not immediately

applied to the dataset. You are first told how many genes would have passed thefilter. If
you want to accept the filter, you press Accept, otherwise no changes are made.

1905 paszed out of 2467 Accept |



Hierarchical Clustering:

FiIterDataI.-’-‘-.diustData Hierarchical Clustering | Self Organizing Maps | Frincipal Component &nalysis

Hierarchically Cluster Axes

—Gene

[+ Cluster

[~ Calculate ‘eights

—Auray

[+ Cluster

[~ Calculate ‘eights

Sirnilarity b etric Sirnilarity b etric
Correlation [centered] j IEDrreIatiDn [uncentered] j
Average Linkage Clustening | Complete Linkage Cluztering | Single Linkage Cluztering |

The Hierarchical Clustering tab allows you to perform hierarchical clustering on your
data. Thisis an incredibly powerful and useful method for analyzing all sorts of large
genomic datasets. Many published applications of this analysis are given in the references
section at the end.

Cluster currently performs three types of binary, agglomerative, hierarchical clustering.
The basic ideais to assemble a set of items (genes or arrays) into atree, where items are
joined by very short branches if they are very similar to each other, and by increasingly
longer branches as their similarity decreases.

Similarities/Distances:

Thefirst choice that must be made is how “similarity” isto be defined. There are many
ways to compute how similar two series of numbers are, and Cluster provides a small
number of options. The most commonly used similarity metrics are based on Pearson
correlation. The Pearson correlation coefficient between any two series of number

X={ X, Xy, Xy and Y{Y,,Y,,..., Y, } isdefined as

r=i2, X -XYY-Y
N <=tNl o, o,

where X isthe average of valuesin X, and o, is the standard deviation of these values.

There are many ways of conceptualizing the correlation coefficient. If you were to make
a scatterplot of the values of X against Y (pairing X1 with Y1, X2 with Y2 etc...), thenr
reports how well you can fit aline to the values. If instead you think of X and Y as
vectorsin N dimensional space that pass through the origin, r tells you how large is the



angle between them. The simplest way to think about the correlation coefficient isto plot
Xand'Y ascurves, with r telling you how similar the shapes of the two curves are. The
Pearson correlation coefficient is always between -1 and 1, with 1 meaning that the two
series are identical, 0 meaning they are completely independent, and -1 meaning they are
perfect opposites. The correlation coefficient is invariant under scalar transformation of
the data (that is, if you multiply all the valuesin'Y by 2, the correlation between X and Y
will be unchanged). Thus, two curves that have “identical” shape, but different
magnitude, will still have a correlation of 1.

Cluster actually uses four different flavors of the Pearson correlation. The textbook
Pearson correlation coefficient, given by the formula above, is used if you select
Correlation (centered) in the Similarity Metric dialog box.

Correlation (uncentered) uses the following modified equation

I =

ERNE X Y
o> JESL P | Zy

which is basically the same function, except that it assumes the mean is O, even when it is
not. The difference is that, if you have two vectors X and Y with identical shape, but
which are offset relative to each other by a fixed value, they will have a standard Pearson
correlation (centered correlation) of 1 but will not have an uncentered correlation of 1.

Cluster provides two similarity metrics that are the absolute value of these two
correlation functions, which consider two items to be similar if they have opposite
expression patterns; the standard correlation coefficients consider opposite genes are
being very distant.

Two additional metrics are non-paramteric versions of Pearson correlation coefficients,
which are described in

http://www.ulib.org/webRoot/Books/Numerical Reci pes/bookcpdf/c14-6.pdf

When either X or Y has missing values, only observations present for both X and Y are
used in computing similarities.

Clustering:

With any specified metric, the first step in the clustering process is to compute the
distance (the opposite of similarity; for all correlation metrics distance = 1.0 - correlation)
between of all pairs of itemsto be clustered (e.g. the set of genesin the current dataset).
This can often be time consuming, and, with the current implementation of the program,
memory intensive (the maximum amount of memory required is 4*N*N bytes, where N



is the number of items being clustered). The program updates you on its progressin
computing distances.

Once this matrix of distances is computed, the clustering begins. The process used by
Cluster is agglomerative hierarchical processing, which consists of repeated cycles where
the two closest remaining items (those with the smallest distance) are joined by a
node/branch of atree, with the length of the branch set to the distance between the joined
items. The two joined items are removed from list of items being processed replaced by a
item that represents the new branch. The distances between this new item and al other
remaining items are computed, and the process is repeated until only one item remains.
Note that once clustering commences, we are working with items that are true items (e.g.
asingle gene) and items that are pseudo-items that contain a number of true items. There
are avariety of ways to compute distances when we are dealing with pseudo-items, and
Cluster currently provides three choices.

If you click Average Linkage Clustering, a vector is assigned to each pseudo-item, and
this vector is used to compute the distances between this pseudo-item and all remaining
items or pseudo-items using the same similarity metric as was used to calculate the initial
similarity matrix. The vector is the average of the vectors of all actual items (e.g. genes)
contained within the pseudo-item. Thus, when a new branch of the tree is formed joining
together a branch with 5 items and an actual item, the new pseudo-item is assigned a
vector that is the average of the 6 vectorsit contains, and not the average of the two
joined items (note that missing values are not used in the average, and a pseudo-item can
have a missing value if all of the itemsit contains are missing values in the corresponding
row/column). Note to people familiar with clustering algorithms. Thisisreally a variant
of true average linkage clustering, where the distance between two items X and Y isthe
mean of all pairwise distances between items contained in X and Y.

In Sngle Linkage Clustering the distance between two items X and Y is the minimum of
all pairwise distances between items contained in X and Y.

In Complete Linkage Clustering the distance between two items X and Y is the minimum
of all pairwise distances between items contained in X and Y.



Weighting: By default, all of the observations for a given item are treated equally. In
some cases you may want to give some observations more weight than others. For
example, if you have duplicate copies of a gene on your array, you might want to
downweight each individual copy when computing distances between arrays. Y ou can
specify weights using the GWEIGHT (gene weight) and EWEIGHT (experiment weight)
parametersin the input file. By default all weights are set to 1.0. Thus, the actual formula,
with weights included, for the Pearson correlation of X={ X, X,,..., X} and

Y={Y,Y,,...,Y } with observation weights of { W,,W,,...,W, } is.

1 N (X =X YY =Y
r_z:\ilwi Zi_lw{ O I Oy ]

Note that when you are clustering rows (genes), you are using column (array) weights.

It is possible to compute weights as well based on a not entirely well understood function.
If you want to compute weights for clustering genes, select the check box in the Genes
panel of the Hierarchical Clustering tab

Filter Datal &djust Data  Hierarchical Clustering | Self Organizing Mapsl Principal Component .-'f-.nal_l,lsisl

Hierarchically Cluster Axes
Gene —Array
Wwieight Options—
[w| Cluster [ Cluster Cutaff ID-E
W i Weihs I CoatoWeighs | Exeorent [T
Sirnilarity b etric Sirnilarity b etric
IEDrreIatiDn [uncentered] j IEDrreIatiDn [uncentered] j

This will expose a Weight Options dialog box in the Arrays panel (1 realize this
placement is a bit counterintuitive, but it makes sense as you will see below).

The idea behind the Cal culate Weights option isto weight each row (the same idea
applies to columns as well) based on the local density of row vectorsin its vicinity, with a
high density vicinity resulting in alow weight and alow density vicinity resulting in a
higher weight. Thisisimplemented by assigning alocal density score L(i) to each row i.

- 3 ()

alrowsj
whered(i,j) <k



where k (cutoff) and n (exponent) are user supplied parameters. The weight for each row
is % Notethat L(i) isaways at least 1, since d(i,i) = 0. Each other row that is within the

distance k of row i increases L (i) and decreases the weight. The larger d(i,j), the less L (i)
isincreased. Values of n greater than 1 mean that the contribution to L (i) drops off
exponentialy as d(i,j) increases.

Ordering of Output File:

The result of aclustering runisatree or pair of trees (one for genes one for arrays).
However, to visualize the resultsin TreeView, it is necessary to use thistree to reorder the
rows and/or columns in the initial datatable. Note that if you simply draw al of the node
in the tree in the following manner, a natural ordering of items emerges:

YER13ZC
YMLOTOW
YLROZBC
YELO3ISW
YIL10L1C
YIL13gW
YWL160W
YORSL3IW
YOROZEW
YOROOBC
YHR1EL1C
YLLOZEW
YORISEC
YCLO4OwW
YER1ZEC
YMAR105C
YELOLLIW
YOR1T1W
YLR1TBC
YEL103C
YOROT W
YOLOZ1W
YEROT W
YMA30ZC
YOR1540C
YLR258C
YFROS3C
YLR3ITOC
YLR1Z0OC
YELDEOC

Thus, any tree can be used to generate an ordering. However, the ordering for any given
treeis not unique. There is afamily of 2" ordering consistent with any tree of N items;
you can flip any node on the tree (exchange the bottom and top branches) and you will
get anew ordering that is equally consistent with the tree. By default, when Cluster joins
two items, it randomly places one item on the top branch and the other on the bottom
branch. It is possible to guide this process to generate the “best” ordering consistent with
agiventree. Thisisdone by using the GORDER (gene order) and EORDER (experiment
order) parameters in the input file, or by running a self-organizing map (see section
below) prior to clustering. By default, Cluster sets the order parameter for each
row/columnto 1. When anew node is created, Cluster compares the order parameters of
the two joined items, and places the item with the smaller order value on the top branch.
The order parameter for anode is the average of the order parameters of its members.
Thus, if you want the gene order produced by Cluster to be as close as possible (without
violating the structure of the tree) to the order in your input file, you use the GORDER



column, and assign a value that increases for each row. Note that order parameters do not
have to be unique.

Output Files:

Cluster writes up to three output files for each hierarchical clustering run. The root
filename of each file is whatever text you enter into the Job Name dialog box. When you
load afile, Job Name is set to the root filename of the input file. The three output files are

JobName.cdt, JobName.gtr, JobName.atr

The .cdt (for clustered data table) file contains the original data with the rows and
columns reordered based on the clustering result. It is the same format as the input files,
except that an additional column and/or row is added if clustering is performed on genes
and/or arrays. This additional column/row contains a unique identifier for each
row/column that is linked to the description of the tree structure in the .gtr and .atr files.

The .gtr (gene tree) and .atr (array tree) files are tab-delimited text files that report on the
history of node joining in the gene or array clustering (note that these files are produced
only when clustering is performed on the corresponding axis). When clustering begins
each item to be clustered is assigned a unique identifier (e.g. GENE1X or ARRY 42X- the
X isarelic from the days when this was written in Perl and substring searches were

used). These identifiers are added to the .cdt file. As each node is generated, it receives a
unigue identifier as well, starting is NODE1X, NODE2X, etc... Each joining event is
stored inthe .gtr or .atr file as arow with the node identifier, the identifiers of the two
joined elements, and the similarity score for the two joined elements. These files look

like:

NODE1X GENE1X GENE4X 0.98

NODE2X  GENE5X  GENE2X  0.80 §§§§§
NODE3X  NODE1X  GENE3X  0.72 nes
NODE4X  NODE2X NODE3X  0.60 GENE3

The .gtr and/or .atr files are automatically read in TreeView when you open the
corresponding .cdt file.



K-mean Clustering (new):

FiIterDataI .ﬁ.diustDataI Hierarchical Clustering K Means Clustening | Self Organizing Mapsl PCA I

—Perform K-keans Clustening on Data
—Gene —Auray

[+ Organize Genes v Organize Amays

I'I 0 K. [number of nodes] I'I 0 K. [number of nodes]
100 bl ax Cycles 100 bl ax Cycles
b ethod b ethod
= KMeans = KMeans
* KMediods * KMediods

K-means clustering is a simple, but popular, form of cluster analysis. The basic ideais
that you start with a collection of items (e.g. genes) and some chosen number of clusters
(K) you want to find. The items are initially randomly assigned to a cluster. K-means
clustering proceeds by repeated application of a two-step process where:

1) the mean vector for al itemsin each cluster is computed
2) itemsare reassigned to the cluster whose center is closest to the item

The parameters that control k-means clustering are

1) the number of clusters (K)
2) the maximum number of cycles

The output is simply an assignment of items to a cluster. The implementation here smply
rearranges the rows and/or columns based on which cluster they were assigned to in the
final cycle. The output filename is JobName_K_GKy _AKa.txt, where GKg is included if
genes were organized, and AKy isincluded if arrays were organized.

Cluster also implements a dight variation on k-means clustering known as k-mediod
clustering in which the median instead of the mean of items in a node are used.

The next version of Cluster will have a more sophisticated interface for K-means
clustering.



Self-Organizing M aps:

Filter Datal Adjuzt Datal Hierarchical Clustering  Self Organizing Maps | Principal Component &nalysis

Arrange Axes With Self-Organizing Mapz
—Gene —Auray
[+ Organize Genes v Organize Amays

I'I #Dimn I'I #Dirn
I'IEI D I'IEI ' Dlirn

|1 00000 [kerations Make SOM | IEUUUU [kerations

Self-Organizing Maps (SOMs) is a method of cluster analysis that are somewhat related
to k-means clusterins. SOMs were invented in by Teuvo Kohonen in the early 1980s, and
have recently been used in genomic analysis (see Chu 1998, Tamayo 1999 and Golub
1999 in references). The Tamayo paper contains a simple explanation of the methods. A
more detailed description is available in the book by Kohonen, Self-Organizing Maps,
1997.

The current implementation varies sightly from that of Tamayo et a., in that it restricts
the analysis one-dimensional SOMs along each axis, as opposed to a two-dimensional
network. The one-dimensional SOM is used to reorder the elements on whichever axes
are selected. The result is similar to the result of k-means clustering, except that, unlike k-
means, the nodes in a SOM are ordered. This tends to result in arelatively smooth
transition between groups.

The options for SOMs are 1) whether or not you will organize each axis, 2) the number of
nodes for each axis (the default is the square-root of the number of items) and the number
of iterationsto be run.

The output file is of the form JobName_SOM_GXg-Yy AXa-Ya.txt, where GXy-Yy is
included if genes were organized, and AXg-Yy is included if arrays were organized. X and
Y represent the dimensions of the corresponding SOM; note that in this version X is
always 1. Up to two additiona files (.gnf and .anf) are written containing the vectors for
the SOM nodes.

In the next version of the clustering software, two-dimensional SOMs will be supported
and will have their own visualization methods.



SOM s and hierarchical clustering: Our original use of SOMs (see Chu et al., 1998) was
motivated by the desire to take advantage of the properties of both SOMs and hierarchical
clustering. This was accomplished by first computing a one dimensional SOM, and using
the ordering from the SOM to guide the flipping of nodes in the hierarchical tree. In
Cluster, after a SOM isrun on a dataset, the GORDER and/or EORDER fields are set to
the ordering from the SOM so that, for subsequent hierarchical clustering runs, the output
ordering will come as close as possible to the ordering in the SOM without violating the
structure of the tree.




Principal Component Analysis:

Cluster will perform principal component analysis on data. The output isvery smplein
this version and consists of two files: JobName_swv.txt that contains the principal
components and JobName_svu.txt that contains the loadings of each gene on the principal
components. A more sophisticated set of principal component based tools is being
prepared in the next version of Cluster.
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TreeView isaprogram that alows interactive graphical analysis of the results from
Cluster. It isfairly straightforward, but a manual is being prepared and will be available

by January 1, 2000.
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